Advertisemen
I can't find a pen, so I'm going to have to write notes here!
Properties of a greedy algorithm:
- Makes the choice that looks best at the current time - this is a locally optimal choice in the hope that this leads to a globally optimal choice.
- They do not always yield optimal solutions, but for many problems they do.
On each step the choice made must be:
- Feasible - it has a satisfy the problem constraints
- Optimal (at least locally) - it has to be the best choice among all the feasible choices
- Irrevocable - once a choice has been made, it cannot be changed in the later steps of the algorithm
"a globally optimal solution can be obtained by from a series of local improvements from starting solution set."
That is, the greedy method suggests that one can devise an algorithm which works in stages, considering one input at a time. At each stage the locally optimal choice is made, which, when the problem is solved, create a globally optimal solution.
A more formal definition of the greedy method is:
- Given n inputs, choose a subset that satisfies the problem's constraints
- A subset that satisfies the constraints is feasible solution
- A feasible solution that maximises or minimises a function is optimal
(Adapted from M. Manjunathaiah SE2EA11 lecture notes, Introduction to Algorithms 1997, Fundamentals of Computer Algorithms 1978)
Advertisemen
Tidak ada komentar:
Posting Komentar